Sign Up

Have an account? Sign In Now

Sign In

Captcha Click on image to update the captcha.

Forgot Password?

Need An Account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Have an account? Sign In Now

Please type your username.

Please type your E-Mail.

Please choose an appropriate title for the question so it can be answered easily.
Please choose the appropriate section so the question can be searched easily.

Please choose suitable Keywords Ex: question, poll.

Type the description thoroughly and in details.

Captcha Click on image to update the captcha.

Don't have account, Sign Up Here

Please briefly explain why you feel this question should be reported.

Please briefly explain why you feel this answer should be reported.

Please briefly explain why you feel this user should be reported.

electricalstudent
Sign InSign Up

electricalstudent

Search
Ask A Question

Mobile menu

Close
Ask a Question
  • Contact Us
Home/basic engineering circuit analysis 11th edition

electricalstudent Latest Questions

venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 12.21 The antenna of an FM radio picks up stations across the entire FM frequency range-approximately 87.5 MHz to 108 MHz. The radio’s circuitry must have the capability to first reject all of the stations except the one that the listener wants to hear and then to boost the minute antenna signal. Chapter: 12

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 20
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 12.20 The ac-dc converter in Fig. 12.47a is designed for usse with a hand-held calculator. Ideally, the circuit should convert a 120-V rms sinusoidal voltage to a 9-V dc output. In actuality, the output is uo(t) = 9 + 0.5 sin 377t V Let us use a low-pass filter to reduce the 60-Hz component of vo (t). Chapter: 12

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 17
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 3.6 Suppose we wish to find the currents in the two resistors in the circuit of Fig. 3.12a. Chapter: 3

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 13
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 3.1 Suppose that the network in Fig. 3.4 has the following parameters: IA = 1 mA, RI = 12 k0, R2 = 6 kQ, IB = 4 mA, and R3 =6 kQ. Let us determine all node voltages and branch currents. Chapter: 3

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 14
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 9.18 Suppose that a man is working on the roof of a mobile home with a hand drill. It is early in the day, the man is barefoot, and dew covers the mobile home. The ground prong on the electrical plug of the drill has been removed. Will the man be shocked if the “hot” electrical line shorts to Chapter: 9

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 18
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 9.14 Plastic kayaks are manufactured using a process called rotomolding, which is diagrammed in Fig. 9.19. Molten plastic is injected into a mold, which is then spun on the long axis of the kayak until the plastic cools, resulting in a hollow one-piece craft. Suppose that the induction motors used to Chapter: 9

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 10
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 8.4 Once again, let us determine the current in the RL circuit examined in Example 8.3. However, rather than apply VM cos wt, we will apply VMe^jwt. Chapter8

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 17
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 12.12 On July 1, 1940, the third longest bridge in the nation, the Tacoma Narrows Bridge, was opened to traffic across Puget Sound in Washington. On November 7, 1940, the structure collapsed in what has become the most celebrated structural failure of that century. A photograph of the bridge, Chapter: 12

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 8
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 1.1 Next let us consider the case in which an independent Voltage source is connected between two nonreference nodes. Suppose that your car will not start. To determine whether the battery is faulty, you turn on the light switch and find that the lights are very dim, indicating a weak battery. You Chapter:1

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 10
Answer
venkyelectrical
venkyelectrical
Asked: August 25, 2022In: control systems engineering

Question: 8.17 Let’s solve for the current i(t) in the circuit in Fig. 8.25. At first glance, this appears to be a simple single-loop circuit. A more detailed observation reveals that the two sources operate at different frequencies. The radian frequency for the source on the left is 10 rad/s, while the sOurce on Chapter: 8

basic engineering circuit analysis 11th edition
  • 0
  • 1
  • 9
Answer
1 2 … 17

Sidebar

Recent Posts

  • how to solve any problem on translational mechanical system transfer function
  • Problem 1. An NMOS common-source amplifier circuit shown as the figure, the transistor parameters are: VTN=0.8V, Kn = 1mA/V2, and the channel modulation effect is ignored. The circuit parameters are VDD=5V, Rs=1KΩ, RD= 4KΩ, R1=225KΩ, and R2=175KΩ.
    Find the circuit quiescent values IDQ and VDSQ.
    Drawthesmallsignalequivalentcircuit.
    FindthesmallsignalvoltagegainforRLasanopencircuit. 4. Find the input impedance Rin as indicated in the figure.
    Find the output impedance Rout as indicated in the figure.
  • (50 points) This problem has 14 questions. Consider the lossless transmission line given below. Use the attached Smith Chart to find:(a)(2 points) The magnitude I and phase A of the reflection coefficient.
    (b) (2 points) Determine the Standing Wave Ratio (SWR).(c) find the normalized load admittance y and load admittance (d) find the normalized load impedance Zion and the load impedance Zion (e) what is the distance dmin from the load to first voltage minimum indicate on the smith chart the position of voltage minimum.(f) what is the distance dmax from the load to first voltage maximum indicate on the smith chart the position of voltage maximum (g) (4 points) The total voltage on a transmission line is given by: V (2) = Vat e-iP2 + Vi eiBE
    Using I and dmax from previous questions, find the maximum voltage in terms of Vö
    (h) (4 points) Using I and din from previous questions, find the minimum voltage in terms
    of Vot
  • Quiz 1: BIT Amplifier
    Take |VBE|=0.7V, Vr=25mV, p=99. Compute the DC Bias (only IE).
    Draw the small signal model and find the overall voltage gains (vo/vsig).
  • A LTI system is described by
    y(n] = x(n] +2x|n-1] + x[n-2]
    (a) Decide its system impulse response h(n).
    (b) Is this system stable? give reasoning for your answer.
    (c) Decide its frequency response H(elo).
    (9)
    Let the discrete system is defined by input x[m], output y[n] and system
    function h|n]. Answer to the following:
    (a) Using Convolution, find output y[n] for input x[n] = 8(n] + 28[n-1] +
    8[n-2] and h(n] = U(n]. Also Sketch it using stem plot.
    (4)
    (b) Find y[n] in a closed form for x[n]= U(n] and h[n] = a”U[n]
    (assume n≥0 and a]<1). You may use Z transform.
    (4)
    Find the discrete-time system function H(z) that responds to an input
    sequence {1, 0.6; and an output sequence { 4, 2, 1, 1, 1, 1, 1, 1, 1,-
    (here
    _- means all 1s)
    (9)
    4.
    Solve, by Z-transform, for y[n] in a closed form,
    y(n+2] -y[n] -y[n+1]=0, where y[O]=0 and y[1)=1.
    Use Z[y(n+1)]=zY(z) -zy(0) and
    Z[y(n+2) = z?Y(z)-27y(0) – zy(1)

Recent Comments

  1. venkyelectrical on Bonus Problem (10 points): In this circuit, the op amp is IDEAL. The op amp is NOT operating in the linear region. In this Circuit, V+=V_. The op amp output saturates at +12v. The output is always at saturation, either positive or negative. The output will “toggle” as Vin crosses a “threshold” voltage. Because of the positive feedback, the threshold voltage changes depending on the state of the output voltage. Find the lower and upper values of the threshold voltages to 5 places of precision.
  2. venkyelectrical on Problem #3 Operational Amplifiers (35 pts): The op amp is IDEAL and operating in the linear region. Find the voltage gain (Av) of the circuit. If Vin = -2, find io.
  3. venkyelectrical on Problem #2 Operational Amplifiers (35 pts): Op amp is ideal and operating in the linear region. Find the node voltages in the table.
  4. venkyelectrical on Problem #I Linear Amplifiers (40 pts) (SHOW ALL WORK) In the Problem, all resistor values are in ohms, voltages are volts and currents are amps. Amp “A” is voltage-to-current, Amps “B” and “C” are current-to-voltage. Use /1 = 0.01(V1), v2 = 100(/2) and V3 = 50(/3). Use Vin shown in the table. Find all the values listed in the table. Hint: Observe that R3, R4 and R5 are m parallel.
  5. venkyelectrical on 3. This problem is on the quantization and encoding. Answer to the following: Assume round-off rule for uniform quantization. We have 10 samples from the analog signal and their quantization error qε are found to be distributed as, qε =[0.33, 0.36, -0.38, 0.22, -0.4, 0.07, 0.4, -0.18, -0.25, 0.38] (a) Decide the suitable value of quantization step size ∆. Give reasoning for your answer (3) (b) We assume that qε are uniformly distributed with its probability density function f ∆ (∆) =1 /∆ for the interval [-∆/2, +∆/2]. Calculate the quantization noise power Pqε for the value of ∆ you found in part (a). (3) (c) Per the quantization noise power you calculated in part (b), calculate the signal power S [Watt] if output Signal to Q-zation noise power ratio SNRo = 30 dB. (3) (d) If we encode the quantizer output with binary code with length ‘n’(integer), decide the minimum code length ‘n’ based on the condition given in part (c) (1)

Explore

  • About Us
  • Account
  • Badges
  • Blog
  • Blog list
  • Communities
  • Contact Us
  • Default Redirect Page
  • FAQs
  • Home
  • Join Us
    • Registration
  • Login
  • Lost Password
  • Member Login
  • Member Login
    • Password Reset
    • Profile
  • Member LogOut
  • Member TOS Page
  • My Account
  • Public Individual Page
  • Question Sidebar
  • Questions
    • Activities
    • Ask a question
    • Categories
    • Profile
    • Tags
  • Questions Feed
  • Register
  • Subscription Plan
  • Tags
  • Thank You
  • Typography
  • Users
  • Widgets

Footer

© 2022 electrical student. All Rights Reserved
With Love by electricalstudent.com.

need to be solved your homework ?
 

Loading Comments...
 

    Insert/edit link

    Enter the destination URL

    Or link to existing content

      No search term specified. Showing recent items. Search or use up and down arrow keys to select an item.