- x1(n) = 3δ(n + 2) + 2δ(n) – δ(n – 3) + 5δ(n – 7), -5 ≤ n ≤ 15.
- x2(n) Σe−|k|5k=−5=δ(n – 2k), -10 ≤ n ≤ 10.
- x3(n) = 10u(n) – 5u(n – 5) – 10u(n – 10) + 5u(n – 15).
- x4(n) = e0.1n[u(n + 20) – u(n – 10)].
- x5(n) = 5[cos(0.49πn) + cos(0.51πn)], -200 ≤ n ≤ 200. Comment on the waveform shape.
- x6(n) = 2 sin(0.01πn)cos(0.5πn), -200 ≤ n ≤ 200. Comment on the waveform shape.
- x7(n) = e−0.05n sin(0.1πn + π/3), 0 ≤ n ≤ 100. Comment on the waveform shape.
- x8(n) = e0.01n sin(0.1πn), 0 ≤ n ≤ 100. Comment on the waveform shape.

to solve this problem we need impseq.m function which is provided here
function [x,n] = impseq(n0,n1,n2)
% Generates x(n) = delta(n-n0); n1 <= n,n0 <= n2
% ----------------------------------------------
% [x,n] = impseq(n0,n1,n2)
%
if ((n0 < n1) | (n0 > n2) | (n1 > n2))
error('arguments must satisfy n1 <= n0 <= n2')
end
n = [n1:n2];
%x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))];
x = [(n-n0) == 0];